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Abstract-With the use of the convolution-type functional a variational description is given for the process 
of unsteady-state heat conduction with the first-kind boundary conditions for a two-dimensional region 
whose boundary moves in time according to the familiar arbitrary law. Based on the Galerkin-Kantorovich 
method, a corresponding system of Euler equations is written the solution of which (numerical or analytical) 
is required to determine the temperature field in each specific case. As an example, the first and second 
analytic approximations to the solution of the above problem are obtained for the case of the deformation 

of a prism having initially a circular cross-section. 

INTRODUCTION 

THE DETERMINATION of temperature fields in bodies 

whose size and shape vary in time is an important 
problem of the technological thermal physics when 
consideration is given to the treatment of metals and 
alloys by traditional techniques (plastic metal 
working, machining, grinding, etc.). The solution of 
this problem is also required when account is made of 
the abrasion in time of thermally stressed heat engine 
elements, evaporation of liquid droplets in a gas flow, 
etc. The same problems, but in a different termin- 
ology, are encountered, for example, in the theory of 
strength, in electrodynamics and filtration. 

A change in the shape of the body and in the motion 
of its boundary leads to a situation requiring that the 
classical linear heat conduction theory methods (the 
separation of variables, integral transformations, etc.) 
be preliminarily subjected to special transformations, 

a detailed description of which is given in ref. [l]. 
Note that the first results associated with a moving 
boundary seem to be those obtained by Lyubov [2]. 
Later, Grinberg [3] obtained a functional trans- 
formation which converts the boundary-value prob- 
lem studied in such a moving coordinate system in 
which the transformed heat conduction equation 
admitted an exact solution by separating the variables 
over a segment for certain laws of the motion of a 
boundary and corresponding conditions on it. 

Kartashov and Nechayev [4] developed the method 
of construction of Green’s functions in non-cyl- 
indrical regions and illustrated its effectiveness over a 
segment for uniform motion of one of the boundaries 
and assignment of the first-kind boundary conditions. 

The mathematical aspects of the heat conduction 
boundary-value problem in the region with a moving 
boundary and some methods of its numerical and 
analytical solution are discussed elsewhere [5]. In all 

of these methods [2-S] the thermophysical properties 
of the body material are assumed to be constant. 

Based on the variational description of the phenom- 

enon, studied with the use of the convolution-type 
functional, the method of constructing an approxi- 

mate analytical solution to the heat conduction prob- 
lem over a segment in the case of an arbitrary law of 
boundary motion and arbitrary boundary conditions 
for the space- and time-dependent thermophysical 
characteristics of the medium was for the first time 
developed in work [6]. 

It should be noted that despite the requirements of 
practice, the literature lacks any exact or approximate 
analytical solution to the unsteady-state heat con- 
duction problem in a two-dimensional region with a 
moving outer boundary. This is due, of course, to the 

great difficulty of obtaining such a solution. 
In the present work, which extends the results 

obtained in ref. [6], the method has been developed 
for obtaining an approximate analytical solution of 
the above-mentioned two-dimensional problem for 
an arbitrary law of body boundary motion, and an 
example of its application is given. 

STATEMENT OF THE PROBLEM AND ITS 
REDUCTION TO A CYLINDRICAL REGION 

Consider, in the rectangular system of coordinates 
x, y, z, the region Q, bounded from above by the figure 
n(t) on the plane z = t, from below by the figure n(O) 
on the plane z = 0 and from the side by the surface S, 
(Fig. 1). The formation of the region Ql corresponds 
to the arbitrary transition of the figure n(O) into the 
figure n(t) on the plane (x,~) on the time interval 

10, 4. 
Let T(x, y, z) be the solution of the following two- 

dimensional boundary unsteady-state heat con- 
duction problem with a moving external boundary 
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NOMENCLATURE 

cp(x,y,s) volumetric heat capacity of the 

body material 
q(x, y, T) power of volumetric heat 

generation sources 
T(x,y, T) temperature of the point with 

coordinates x, y at time T 
T,(x,y) function of the initial temperature 

distribution 

T,(x, y, T) temperature on the surface 
bounding a body. 

Greek symbols 
1 (x, y, T) thermal conductivity of the body 

material. 

0 ___------ /cf e----y 

FIG. 1. Non-cylindrical region of the developing unsteady- 
state heat conduction process. 

FIG. 2. Cylindrical region of the developing unsteady-state 
heat conduction process. 

cp(x,y,zK = divV(x,y,7)VTl 

+q(x,y,7), (x>.~‘>~)Et?l (1) 

T(x, y, 0) = T&7 Y), (X> Y) 6 W) (2) 

T(X,J',7) = Tw(X,.!J,T), (X,Y,7)E& (3) 

Here cp, 1, q and T, are the prescribed functions of 
the variables x,y, 7, and T,(x, y) is the function of the 
variables x, y. Further, suppose there is also another 
space with the system of coordinates u, v, 7 and with 
the cylindrical region I’, = ((IL, v, 7) : (u, v) E R,7 E (0, f)> 
(Fig. 2). Assume that the regions Q, and I’, are 

in one-to-one continuous correspondence brought 
about by the formulae 

x = x(u, v, 7) 

Y = Y(K a,7) 

i 

(4) 
7 = 7. 

In this case, to the points of the upper and lower bases 
fi and of the side surface F, of the cylinder I’, there 
respectively correspond the points of the surfaces n(t), 
n(O) and S, that bound the region Q, and conversely 
formulae (4) yield the relations 

u = 7&Y, 7) 

0 = v(x, Y, 7) 

I 

(5) 
7 = 7. 

Assume that functions u and v, defined by formulae 
(5) have continuous first-order derivatives in the vari- 
able 7 and continuous partial derivatives in the vari- 
ables x and y up to second order inclusive. In the new 
variables u, v, 7 the problem (lt(3) will be stated as 

CPT, = a,,T,,+a,,T,,+a,,T,,+a,T, 

+a,T,+q, (u,u,~)E V, (6) 

T= To, (u,v,O)EQ (7) 

T= T,, (u,v, T)EFr (8) 

Here, the old notation was used, namely, the function 
cp = cp(u, v,z) is understood to be the function 
cp(x(u, v, 7) y(u,v, 7) 7) T = T(u, v,7) denotes the 
function T(x(u, v, z), y(u, v, T), 7) and so on. The func- 
tions U~,, a, i, j = 1,2 are calculated from the following 
formulae with the aid of relations (4) : 

a,, = IV%, a,* = 21VuV0, uz2 = AV%, 

a, = div,?Vu-cpu,, u2 = divLVv-cpv,. 

THE CONSTRUCTION OF THE 

CONVOLUTION-TYPE FUNCTIONAL 

Construct the functional J(T) in such a way that 
the solution of problem (6t(8) could be its stationary 
point and, consequently, could transform the first 
variation J(T) to zero, i.e. 6J(T) = 0. For 
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convenience, adopt the following notation : I 
A,,(7)6T,,(z)T(t-~)dududr 

f(7) = fh, v, 7), f = _I-(% 4. JJJ 0 
n 

The functional J(T) will be sought in the form I 
JJJ 

= 
J(T) = ’ [R(7)Tr(7)+A,,(7)Td7) 

JJ A,, (7)6Tu(7)T(t-7)n, dldz 
0 L. 

0 
n 

+A,,(7)Tu"(7)+A*2(7)T""(7) 
- JJJ t [A,,.(7)T(t-7) 

0 
0 

+A,,(r)T,(t-7)]6T,(z)dudvdr 

+ JJ R(t)[T(O)-2T,]T(t)dudu = JJ ’ M,,(7)Ut-7Wu(7) 
0 L 

n 

JJ -A, d7)T(t-7)6T(7) 

+ ; L {[4,(7)T(t-7)+q*(7)T"o-7) 
-A,,(7)T,(t-7)6T(z)]n, dId7 

+93(~)~“(f-~llv-(7)- Tw(7ll 

+q,(7)v7v-“(~-7) 
+ JJJ ’ [A, d7)T(f-7) 

0 
n 

+q,(z)T(z)T,(t-7))dldz (9) 

where L is the curve bounding the plane region !& 
+~A,,,(T)T,(?-~)+A,,(~)T,(~-~)I 

Assume J(T) = J, + J2+ J,, where J, (i = 1,2,3) x 6T(7)dudv d7 (12) 
denote the integrals entering into the functional J(T), 
respectively. Calculate the first variation of the func- f 
tional J, JJJ A,,(T)~T,,(~)T(~-7)dududr 

0 

JJJ 
n 

6J, = ’ [R(~)T,(~)+AI,(~)T,,(~) 
0 

cl = JJ ’ IA,2(7)T(t-7)6Tu(7)% 
0 L 

+A,,(7)Tu,(7)+A,,(7)Tw(7) 

+AI(~)T,(~)+A,(~)T,(~) 
-(A,,,(7)T(t-7)+A,,(7)Tu(r-7)) 

+A(7)T(7)+Q(7)]6T(t-7)dududr x 6T(z)n,]dZdr 

’ + JJJ iR(rWA7)fA I ,(7Wuu(7) + 
0 

n JJJ ’ P,,,,(V(t-4 
0 

R 

+A,,(z)GT,,(r)+A,,(z)GT,,(r) +A,,,(~)T,(t-7)+A,,,(z)T,(t-z) 
+A,(2)6T,(r)+A,(z)6T,(z) 

+A,,(z)T,,(t-7)]6T(s)dudvd7 (13) 
fA(7)6T(~)]T(t-7)dudvdr. (10) 

’ Using the integration formula by parts, the Green 
formula and the commutative property of the con- JJJ A,,(7)6T,,(z)T(t-7)dududt 

0 n 
volution, the terms entering into the second integral 
in formula (10) will be transformed in the following 
way : = JJ ’ [A,,(~V’(t-rW,(~) 0 L I JJJ R(7)6T,(7)T(t-7)dudvdz -(Ax(~)T~(~-~)+AxJ~)T(~-~)) 

0 
R 

x c5T(7)]nz dldr 

= 
ss 

[R(t)6T(t)T(O)-R(0)6T(O)T(t)] du do 
n + ’ [A,,,,(4T(t-~) 

D + JJJ 
sss ’ Put--7)T(7) 

n 
0 

n +2A2~,(z)Tu(t-~)+A22(r)Tvu(f-~)l 

+R(t-r)T,(r)]GT(t-7)dudvdz (11) x6T(z)dudvdr (14) 
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s’ss A,(7)8T,(z)T(t-T)dududt 
II 

R 

p,(t-7) = A,,(t-7)n, +Alz(t--r)n* 

Jut-7) = A*dt--T)% 

- 
sss 

’ L4 ,.(7)T(l-7) 
0 

R 

+A,(z)T,(t-7)]6T(z)dudvdz 

i“ls 
A,(7)6T,(z)T(t-T)dudvdz 

0 
n 

S’I 
&(I-7) = --A,,,(7-7)-‘4,2,(t-7)n, 

= A,(z)T(t-7)6T(z)n, dldz --A,,“(t--)n,+A,(t--z)n, +A,(t-7)n, 
0 L 

P4(f--7) = -A,,(t-7)n, 

p5(t-7) = -A,,(t-7)n, -A,,(t--7)n,. (18) 

Further, we have in succession 

(15) 
6J, = 

U 
{R(t)T(t)GT(O) 

n 

+R(t)[T(O)-2T,#T(t)}dudv (19) 

= Az(7)GT(7)T(t-z)n,dZdz 6J3 = 

- Iss l L42,(7)T(t-7) 
0 

n 

+q2(7)gTu(f-7)+q3(7)~T”(7-7)l 

x [T(7)- Tw(7)1+ [4,(7)Vt-7) 

+42(.r)T.(t-z)+43(7)r,(t-z)1 +A,(z)T,(t-z)]67-(r)dudvdr. (16) 

In formulae (12)-(16) n, and n2 are the direction 
cosines of the normal to curve L. Taking into account 
formulae (1 l)-( 16) and again using the commutative 
property of the convolution, it is not difficult to write 
formula (10) in the form 

6J, = 
sss 

of W7(7)+W-7)lT,(7) 

n 

+]~,,(7)+~,,(7-7)lTUU(7) 

+L4,2(7)+A,*(t-7)lTU”(7) 

+L42*(7)+4422(~-7)lT”U(7) 

+]A,(7)+2A,,,(t-7)+A,,,(t-7) 

-A,(t-7)lT,(7)+L4*(7)+A,,,(t-7) 

+2A,,,(t-7)--A,(t--r)lT,(7)+Q(7) 

+[47)+W-7)+A,,,,(t-7) 

+~,,,“(~-7)+~,,““(~-7)--A,J~-7) 

-A,,@-T)+A(t-7)]T(T)}6T(t-7) 

xdudvdz + 
is 

]R(OT(O)ST(O 

n 

-R(O)T(t)6T(O)]dudu 

+ 
ss 
; L ]Pt(t-T)T(7)~T,(t-7) 

+p2(f-T)T(r)GT”(t-z) 

+p,(t-z)T(r)ST(t-7) 

+‘v4(t-T)T,(z)GT(t-7) 

+p,(t-7)T,(z)ST(t-7)]dZd7. 

Here, pl, i = 1,. . . , 5 denote the functions 

x U&-r)} dldz. 

Formulae (17) (19) and (20) yield 

6J(T) = 
sss 

; {]R(7)+JW-7)lT,(7) 

R 

+L4,,(7)+A,,(t-7)lT.z,(7) 

+L4,2(7)+A12(t-7)lT,m(7) 

+L422(7)+,422(t-7)lTm(7) 

+L4,(7)+2A,,,(t-7) 

+A,,,(t-7)-A,(t-7)lT,(7) 

+]A,(7)+A,,,(t-7)+2A,,,(t-7) 

-A,(t-7)lT,(7)+Q(7) 

+L4(7)+K(t--)+A,,,,(t-7) 

+~,,,(7-7)+~22”“(t-7) 

-A,,(t-7)-AZ”(t-7)+A(t-7)] 

x T(z)}GT(t-7)dudvdz 

+ 
ss 

PW)]T(f9- T,IGT(t) 

+[k&?(O)]T(t)6T(O)}dudv 

(17) 

+ 
ss 

; L {h,(+T(t-4 

+qz(7)~T&-7)+q,(7)sT,(t_z)l 

x ]T(7)-T,(7)1+[(~3(f-7) 

+q,(t---z))T(7)+(p,(t--7) 

(20) 
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+42(t-7)+44(t-7>)T,(s) 

+(P5(t-~)+93(t-7) 

+sS(t-7>)T”(7)lsT(t-7) 

+[P,(t-7)+q,(7)1T(T)sT,(t-z) 

+iM-7)+qd7w(4 
x GZ’Jt-7)) dldz. (21) 

Define the unknown functions qi, R, A,, A,, A, Q by 
the equalities 

R(t) = R(0) 

p3(7)+q1(7) = 0 

P4(7)+4z(7)+q4(7) = 0 

P5(7)+&(7)+q5(7) = 0 

p1(t-7)+q‘l(7) = 0 

p2(t-7)+q5(7) = 0 (22) 

and, when 0 < 7 < 1/2t, by the relations 

R(z)+R(t-7) = 2cp(z), 

A,(7)+A,(t-7) = -2a,,(z), i,j = 1,2 

A,(7)+2A,,,(t-7)+A,,,(t--r)--A,(t--r) 

= -2a,(z), 

A2(7)+2A22”(t-Z)+A,2u(f-7)-A2(f-7) 

= -2a,(z), 

A(7)+R,(t-7)+A,,,,(t-t) 

+A,,,,(t--z)+A,,,,(t-7)-A,,(t-7) 

-A&t--z)+A(t-7) = 0, 

Q (7) = -247). (23) 

It is obvious that the system of equations (23) is 
consistent. Then, it follows from formulae (18) and 
(22) that the functions q?(z), i = 1,. . ,5 have been 
determined. The consideration of formulae (18) and 
(21~(23) shows that when 0 < 7 < 1/2t, the function 
T(u, u, T), which makes the first variation of the func- 
tional J(T) vanish (6J(T) = 0), is the solution of the 
initial problem (6t(8). 

DERIVATION OF THE SYSTEM OF EULER 

EQUATIONS WITH THE USE OF THE 

GALERKIN-KANTOROVICH METHOD FOR AN 

APPROXIMATE SOLUTION 

Let the functions $‘j(u, v), i, j = 0, 1,2,. . , form the 
full system of functions in region R. The approximate 
solution of the problem (6t(8) will be sought in the 
form 

T,,(u, u, 7) = i: 2 Vij(7)@+4, 0). (24) 
i=Oj=O 

The unknown functions Vij(7), i, j = 0, 1,2, . . . , are 
selected from the condition that the function T__. 

determined by formula (24), transforms the first vari- 
ation of the functional J(T) into zero (6J(T,,) = 0). 

Formulae (21k(24) yield 

+R(t-t))V:,(7)@+((A,,(z) 

+A,,(t-7))4Z,+(A,,(7)+A,,(t-7)) 

x4~+(A~~(7)+An(t-7))4~+(A,(7) 

+2A,,,(t-z)+A,,,(t-7)-A,(t-7)) 

~4;+(A,(7)+A,,,(t-7)+2A,,,(t-7) 

-A&-7))&!+(A(z)+&(t-7) 

+A,,,,(t--z)+A,,,,(t-7)+A,,,(t-7) 

-A,,(t-7)-A,,(t-z)+A(t-7)) 

x 4”)Vii(7)l + Q(7)}4%V’&-~) 

xdudvdr + 2x 
k,l 

x @j-T, ~$~‘sVk,(t) dudv 1 

x [41(7)~“+q2(7)~tf’+43(7)~~‘1 

x 6 Vk,(t - 7) dldr = 0. (25) 

Introduce the following notation : 

ss 
[R(r)+R(t-r)]@j~k’dudv = crijk,(7), 

n 

IS 
{[A,,(7)+A,,(t-7)1~~” 

R 

+[A,,(z)+A,,(t-z)l~~+[A,,(r) 

+A**(f-7)1~~+[A,(z)+2A,,,(t-.r) 

+A,,$-7)-A,(t-r)M:+[A,(z) 

+A,,,(t-7)+2A,,,(t-z)-A,(t-7)]c$y 

+[A(7)+Rr(t-7)+A,,,,(t-7) 

+A,,,(t-7)+A,,,,(t-7)-A,,(t-7) 

--A,,+7)+A(t--z)]#~“}qb~‘dudu= fiijk,(7), 

ss 
R (t)$‘j4k’ du dv = yijk,(t), 

n 

- R(t)To4k’dudu = yk,(t), 
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s [q,(7)~k’+q2(7)~~‘+q3(7)~~‘l~~‘dl = 4&), 
where a(7) is the value of the ellipse’s small half-axis 

L which is an arbitrary positive function of time. 
Let the initial temperature T, be the same every- 

where throughout the prism and its bounding surface 
- 

5 
T,(z)[qt(z)~k’+q2(z)~~‘+q3(~)~~‘ldl = ~(9, b e 

L 
maintained at a time constant and everywhere the 

same temperature T,. The thermophysical properties 

JJ 

of the body material will also be assumed constant. 
Q(~)4~‘dudv = &(7). (26) The power of the volumetric heat generating sources 

R will be assumed constant in time and space. 

With the use of formula (26) equality (25) can be 
Then, remembering that hereafter will everywhere 

written as 
represent the argument iz/cp, the following boun- 
dary-value problem is arrived at in the region Q, 

T, = divVT+q/l, (x,Y,~)EQ, 

T(x,y,O) = T,, (x,y)ofi(O) 

(29) 

(30) 

+ Bij&7) V,(7)) + Bkl(7) 1 ’ Vkl(t-7) d7 
T(x,Y,~) = Tw, (x,Y,~)E&. (31) 

Assume that the function a(7) has a continuous 

r first-order derivative and introduce new variables 

+ 2 1 1 1 Yi,klCf) vij(") + Ykdt) 6 Vkl(f) u = x/a(z), v = ya(z), 7 = 7 (32) t,, ,j 

B0kl(7) vij(7) + Glkl(7) 1 
so that problem (29~(3 1) will be written in the form 

x sV,,(t-7)dz = 0. (27) (u, a, 7) E V, (33) 

It follows from formula (27) that the unknown T(u, v, 0) = To, (u, v) E R (34) 
functions Vij(7) represent the solution of the following 
Cauchy problem for the system of ordinary differ- T(u,v,r) = T,, (u,v,~)EF,. (35) 

ential equations Here 

; {cri,k,(7)v:,(7> + [ &kd7) K = {(U,U,7):(U,U)Efi, 7E(O,f)}, 

R = {(u,v):uZ+u2 < 1}, 
+ 6ijk1(7)1 vij<7>l +flk,(7) + akl(7) = 0, 

F, = {(u,v,7):u2+v2 = 1, z~(O,t)}. 

CYijkl(f)VII(“)+Ykl(t) = 0, By not limiting the generality, it is possible to 
ij 

assume that the constant T, = 0, since the function 
k=O,l,..., n; I=O,l,..., m. (28) T- T, is the solution of equation (33). An approxi- 

mate solution of problem (33~(35) will be sought in 
Thus, the construction of an approximate solution of the form 
problem (6k(8) is reduced to the solution of problem 

(28). T,,(u, u,t) = i f Vij(7)u’v’. (36) 
i=Oj=O 

It is clear that the solution T(u, u, 7) of problem 
EXAMPLE OF THE SOLUTION OF A TWO- (33 j(35) is an even function with respect to variables 
DIMENSIONAL UNSTEADY-STATE HEAT u and u. Therefore, it will be required that the function 

CONDUCTION PROBLEM IN THE REGION T_(u, v, 7), determined by formula (36), be also an 
WITH A MOVING BOUNDARY even one in variables u and v and, moreover, could 

As an example of the application of the above 
vanish on the surface F,. It follows from the con- 

method, consider the formation in time of a tem- 
dition of evenness (T,,,(u, u, 7) = T,,( - u, v, 7) = 

nerature field in a deformable prism which initially 
T_(u, -v, 7)) that 

had a circular cross-section. Assume the deformation 
to be such that the circle of radius a(O) changes with 

T&u, v, 7) = i f Vij(7)u2’v2’ (37) 
i= oj= 0 

time to an ellipse with the same cross-sectional area, 
so that the region Ql is and from the condition T,,(u, u, 7) = 0 at uz+ vz = 1, 

that 

(w>7):& +u2(7)y2 < 1, 7E(O,f) f 
> 

Tnm(u,u,7) = f f V,j(7)(l-u2-u2)iv2’. (38) 
r=lj=O 
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It is clear that the functions V,,(z) in formulae (36)- 
(38) are different. So, the approximate solution of 
problem (33~(35) is 

rn,(U,V,Z) = i f Vij(?)b,” (39) 
i=lj=iJ 

where the coordinate functions 

4” =: (l_Uz_r2)i;02j 

Since in the example considered 

V(r) = 1, 
1 

al,@)=7 
a (r) 

a12(r) = 0, a22(r) =a2(r), 

a’(z) 
a,(z) =1------u, 

a’(4 
a($ 

a2(2) = - -u, 
a(z) 

e (9 = - w4 

then, based on equation (23), it follows that formulae 
(26) for 0 < r < 1/2t will be written in the form 

“tkl = -TO 

ss 

4k’dudv, 

R 

& = -2q/jn 
ss 

4”dudu, 

n 

(40) 

Problem (28) for the determination of the unknown 
functions V,,(z) of expansion (39) will acquire the form 

~ 

5 [‘%jkl v$(z) + @ijkdz) Kjb)l+ Bkl = 0, 

z @hjkl vij:,(") + 2Yk/ = 0, 

i,k=l,2 ,..., n; j,l=O,l,..., m. (41) 

Cafculate the approximate first-order solution 
T,, = V,&)b ‘O(u,v) = V,,(r)(1-24~-v~). It follows 
from equation (41) that this solution can be deter- 
mined from the following problem 

~,o,o~~o~~>+B~c~o~~~~,o~~)+Bto = 0, 

~,~,0~,0(0)+2Y,~ = 0, 

whence 

Formula (40) gives 

2 
ci lOI0 =-xl 3 BlO = -nq/A YIO = - ;T,, 

+4az(r)+4--u2-4av’ dudv a’(r) 

a(r) a(r) 1 
=;2R 1 +a%) 

7@- (43) 

It follows from formulae (42) and (43) that the first 
approximation is calculated from 

x ~=p(3~!$$fht)dv] 

x [exp( --i~~dll)]~I--u’-tr’). 

In conclusion, a system of equations will be given 
which determines the approximate second-order solu- 
tion. The second approximation is prescribed by 

T21@,fl,r) = ~l~~~~#‘“+~ll~” 

+v20420 = V&)(1-u2-v2) 

With the use of formulae (40) and (41), simple 
calculations give that the unknown functions V,,(t), 
Y, ,(z) and V20(r) present the solution of the following 
Cauchy problem 

2 
3Y;o(‘)+~V;l(~)+~V;o(r) 

+2(~+a2~~~)Vlo~~~ 

+[!j(-$ +a2)+&~]VII(z) 

+4 $ +a* V,,(z) = q/A 
c > 
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moving arbitrarily in time can be performed suc- 
cessfully on the basis of the variational description 
which uses the convolution-type functional, after pre- 
liminary transition to the cylindrical region. In this 

case approximate analytical or numerical solution of 

+ (~+$+,,W+ (%+&$2 

the problem stated can be obtained by applying, for 
example, the Galerkin-Kantorovich method. It 
should also be noted that the method developed can 

611 a’ 
+ 711; 

) 

also be extended, without great changes of the con- 
4 

V20(~) = gj 
volution-type functional, to the case of the second- 
and third-kind boundary conditions by assigning the 
heat flux density or the linear coupling between the 
temperature and its gradient on the body surface. 

+ 

17 1 

( ) 

89 
+ 3 2+a2 Y2dz) = 151 

2 
3V,,(0)+~V,,(o~+~V,,(O)= TO 

1. 

2. 

3. 

& V,,(O) + ; v, I(O) + _b V20@) = ; 7-o 4. 

f V,,(O) + & v, 1(O) + ; ~20@9 = ; To. 
5. 

CONCLUSIONS 6. 

The solution of the unsteady-state heat conduction 
problems for a plane region with the outer boundary 
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SOLUTION DUN PROBLEME DE CONDUCTION THERMIQUE VARIABLE POUR UN 
MILIEU BIDIMENSIONNEL AVEC UNE FRONTIERE MOBILE 

R&sum&-A l’aide dune fonctionnelle de type convolution, on donne une description variationnelle de la 
conduction de la chaleur avec des conditions aux limites de premiere espece pour un milieu bidimensionnel 
dont la front&e se d&place dans le temps suivant une loi arbitraire. A partir de la mtthode Galerkin- 
Kantorovich, un systeme correspondant des equations d’Euler est d&it et la solution (numerique ou 
analytique) determine le champ de temperature dans chaque cas particulier. On donne comme exemple les 
approximations analytiques premiere et seconde de la solution d’un probleme de deformation d’un prisme 

ayant initialement une section droite circulaire. 

L&SUNG DES INSTATIONAREN WARMELEITPROBLEMS FUR EIN 
ZWEIDIMENSIONALES GEBIET MIT BEWEGLICHER BEGRENZUNG 

Zusammenfaaaung-Unter Verwendung des Faltungs-Funktionals wird eine Variationsbeschreibung der 
instationlren Wlrmeleitung mit Randbedingungen erster Art fur ein zweidimensionales Gebiet vorgestellt, 
dessen Berandung sich zeitlich verandert. Mit der Galerkin-Kantorovich-Methode wird ein System von 
Euler-Gleichunaen formuliert, deren Liisung (numerisch oder analytisch) zur Bestimmung des Tem- 
peraturfeldes in-jedem Spezialfall gebraucht Gird. In einem Beispiel wird die erste und zweite analytische 
Naherung an die Liisung des oben geschilderten Problems fiir den Fall der Deformation eines Prismas mit 

anfanglich kreisfijrmiger Querschnittsfllche ermittelt. 
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PELUEHME 3AAAYH HECTAIJHOHAPHOR TEl-IJIOl-IPOBO~HOCTM AJIcI J(BYXMEPHOfi 
OBJIACTM C l-lOflB&I~HOti 1-PAHMqER 

hUOT2lQllSl~ BCIIOJIb30BaHHeM~j’HK~HOHaJIaTHlTaCBePTKHIlOCTpOeIiO BapuaUwOHHOeOnwCaHaCnpO- 

UeCCa HCCTaIUiOHapHOii Te~nOIIpOBOAHOCTH C rpaHHYHbIMEi YCnOBHtIMEi IIepBOrO POAa AJUI AByXMepHOii 

o6nacTu, QlaHHUa KOTOPOii ABSDKCTCR BO BpMeHB II0 H3BNTHOMY IIPOU3BOnbHOMY 3aKOHY. &HOBbI- 

BaRCb Ha MeTOA ranepKEiHa-KaHTOpOBWIa, BbIlIliCaHa COOTBeTCTByIoUIa~ CHCTeMa j’paBHeHHii %JIepa, 

pelueHwe ~0T0pOk (4mneHHoe unsi aHanaTmecKoe) HeO6XOAHMO nnr onpenenemin rehmepaTypHor0 
IIOJISI B KaWAOM KOHKPeTHOM CJIy’Iae. flaH IIpLWep lIOJIj”ieHHR aHanliTHSCCKBX IIepBOrO H BTOpOrO 

npu6nemeawn K peL”eHWO C@OpMynHpOBaHHOii BbIme 3Z,AaqH ITpH Ae,$OpMaAHl, nPU3MbI C ,EpBOHa- 

WJIbHO KPYrOBbIM IIOne~YHbIM CeWHHeM. 


