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Abstract—With the use of the convolution-type functional a variational description is given for the process

of unsteady-state heat conduction with the first-kind boundary conditions for a two-dimensional region

whose boundary moves in time according to the familiar arbitrary law. Based on the Galerkin—Kantorovich

method, a corresponding system of Euler equations is written the solution of which (numerical or analytical)

is required to determine the temperature field in each specific case. As an example, the first and second

analytic approximations to the solution of the above problem are obtained for the case of the deformation
of a prism having initially a circular cross-section.

INTRODUCTION

THE DETERMINATION of temperature fields in bodies
whose size and shape vary in time is an important
problem of the technological thermal physics when
consideration is given to the treatment of metals and
alloys by traditional techniques (plastic metal
working, machining, grinding, etc.). The solution of
this problem is also required when account is made of
the abrasion in time of thermally stressed heat engine
elements, evaporation of liquid droplets in a gas flow,
etc. The same problems, but in a different termin-
ology, are encountered, for example, in the theory of
strength, in electrodynamics and filtration.

A change in the shape of the body and in the motion
of its boundary leads to a situation requiring that the
classical linear heat conduction theory methods (the
separation of variables, integral transformations, etc.)
be preliminarily subjected to special transformations,
a detailed description of which is given in ref. [1].
Note that the first results associated with a moving
boundary seem to be those obtained by Lyubov [2].
Later, Grinberg [3] obtained a functional trans-
formation which converts the boundary-value prob-
lem studied in such a moving coordinate system in
which the transformed heat conduction equation
admitted an exact solution by separating the variables
over a segment for certain laws of the motion of a
boundary and corresponding conditions on it.

Kartashov and Nechayev [4] developed the method
of construction of Green’s functions in non-cyl-
indrical regions and illustrated its effectiveness over a
segment for uniform motion of one of the boundaries
and assignment of the first-kind boundary conditions.

The mathematical aspects of the heat conduction
boundary-value problem in the region with a moving
boundary and some methods of its numerical and
analytical solution are discussed elsewhere [5). In all

of these methods [2-5] the thermophysical properties
of the body material are assumed to be constant.

Based on the variational description of the phenom-
enon, studied with the use of the convolution-type
functional, the method of constructing an approxi-
mate analytical solution to the heat conduction prob-
lem over a segment in the case of an arbitrary law of
boundary motion and arbitrary boundary conditions
for the space- and time-dependent thermophysical
characteristics of the medium was for the first time
developed in work [6}.

It should be noted that despite the requirements of
practice, the literature lacks any exact or approximate
analytical solution to the unsteady-state heat con-
duction problem in a two-dimensional region with a
moving outer boundary. This is due, of course, to the
great difficulty of obtaining such a solution.

In the present work, which extends the results
obtained in ref. [6], the method has been developed
for obtaining an approximate analytical solution of
the above-mentioned two-dimensional problem for
an arbitrary law of body boundary motion, and an
example of its application is given.

STATEMENT OF THE PROBLEM AND ITS
REDUCTION TO A CYLINDRICAL REGION

Consider, in the rectangular system of coordinates
x, y, 7, the region Q, bounded from above by the figure
Q(?) on the plane T = ¢, from below by the figure Q(0)
on the plane T = 0 and from the side by the surface S,
(Fig. 1). The formation of the region Q, corresponds
to the arbitrary transition of the figure Q(0) into the
figure Q(#) on the plane (x,y) on the time interval
[0, 7.

Let T(x,y, 1) be the solution of the following two-
dimensional boundary unsteady-state heat con-
duction problem with a moving external boundary
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cp(x,y,1) volumetric heat capacity of the
body material

q(x,y,7) power of volumetric heat
generation sources

T(x,y,t) temperature of the point with
coordinates x, y at time 7

To(x,y) function of the initial temperature
distribution

NOMENCLATURE

T.(x,y,7) temperature on the surface
bounding a body.

Greek symbols
A(x,y,7) thermal conductivity of the body
material.

TA

FiG. 1. Non-cylindrical region of the developing unsteady-
state heat conduction process.

T4

u

Fi1G. 2. Cylindrical region of the developing unsteady-state
heat conduction process.

ep(x,y, DT, = div[i(x, y,7) VT]
+q(x.3,7), (6,0, (1)
T(x,7,0) = To(x,»), (x,»)€Q(0) &)
T(x,y,7) = T,.(x,1,1), (xy1)€S,. 3

Here cp, A, g and T, are the prescribed functions of
the variables x, y, 7, and Ty(x, y) is the function of the
variables x, y. Further, suppose there is also another
space with the system of coordinates u,v,7 and with
the cylindrical region V, = {(u,v,7): (u,0)eQ,1€(0, 1)}
(Fig. 2). Assume that the regions Q, and F, are

in one-to-one continuous correspondence brought
about by the formulae

x = x(u,0v,1)

y = y(u,0,7) )
T =T.

In this case, to the points of the upper and lower bases
Q and of the side surface F, of the cylinder V, there
respectively correspond the points of the surfaces Q(¢),
Q(0) and S, that bound the region Q, and conversely
formulae (4) yield the relations

u=u(x,y,1)
v =0v(x,y,7) )
T=1

Assume that functions « and v, defined by formulae
(5), have continuous first-order derivatives in the vari-
able 7 and continuous partial derivatives in the vari-
ables x and y up to second order inclusive. In the new
variables u, v, 7 the problem (1)—(3) will be stated as

CpTr = alITuu+alzTuu +a22Tvv+alTu

+a,T,+q, (@v,7)eV, (6)
T=T, (uv,0)eQ @
=T, (uuvekF,. (8)

Here, the old notation was used, namely, the function
cp = cp(u,v,7) is understood to be the function
cp(x(u,v,7), y(u,v,1),7), T=T(u,v,7) denotes the
function T(x(u, v, 1), y(u, v, 7),7) and so on. The func-
tions a;, a,i,j = 1,2 are calculated from the following
formulae with the aid of relations (4):

a,, =V, a,,=2lVuVv, a,, =iV,

a, = divAVu—cpu,, a, = diviVo—cpv..

THE CONSTRUCTION OF THE
CONVOLUTION-TYPE FUNCTIONAL

Construct the functional J(7T) in such a way that
the solution of problem (6)—(8) could be its stationary
point and, consequently, could transform the first
variation J(T) to zero, ie. dJ(T)=0. For
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convenience, adopt the following notation:

f@=fo,), f=[fuov).
The functional J(T) will be sought in the form
J(N) = J. jJ.[R(T)Tt(t)'i'AI 1O T (1)

0
9]

+A IZ(T)Tuu(T) +A22(T)Tvu(r)
+ A i (t)Tu(T) + A Z(T)TU(T)
+A@T@)+Q@)]T(t—1)dudvdr

+ I.[.R(t)[T(O)—2T0]T(t) dudv

+ L L {lg (T —D)+ 4.7t —7)

+4;@OT (- DT (1) - TW(v)]
+4.(T @) T, (1)
+45()T(@)T,(t—1)} dldz ®

where L is the curve bounding the plane region Q.

Assume J(T)=J,+J,+J;, where J; (i=1,2,3)
denote the integrals entering into the functional J(7),
respectively. Calculate the first variation of the func-
tional J,

o, = f JJ[R(T)TT(THA-I(T)Tuu(T)
0

+A 1 Z(I)Tuv(‘c) +A22(T)Tvu(t)
+4,(D)T,(1)+ 4,(1)T,(7)
+ AT+ Q(MOT(t—1)dudvdr

+ J: J‘J[R (1)5T1(1)+A i I(T)‘sTuu(I)

+ A 1 2(1.)5 Tuu (T) + A 22(‘[)5 Tvu(t)
+A4,(2)0T,(v) + 4,(1)0T,(7)
+A@OT@))T(t—1)dudvdr. (10)

Using the integration formula by parts, the Green
formula and the commutative property of the con-
volution, the terms entering into the second integral
in formula (10) will be transformed in the following
way

f J‘J‘R ()T, (v)T(t—1)dudovdr

= ”[R (DST()T(0)— ROST(0)T(2)] du dv

+ J‘ fj[R,(t—r)T(r)

+R(t~1)T.(0)16T(t—1)dudvdr (11)

Jl jjA 18T, () T(t—1)dudvdr
0

= J‘IJ. A (@8T, ()Tt —1)n, dlde
0 JL

- J H[A,,u(r)mm
0

+A,, (T, (t—1)6T,(t)dudvdr

- f ‘ f [, (T (t—DoT.(%)
0 JL

— A1, (OT(—1)0T (1)

— A, T, (t—7)T(@)n, didz

+ f JJ[AI 1T (t—=17)

+24,, (T, —1)+ A4 ()T (t—7)]

x 0T(t)dudv dz

f J:[A 12(00T,, ()T —1)dudvdr

= J'l J [41,(D)T(t =)0 T, (7)n,

o
—(41OT(—1)+4,,(OT,(t—1)

x 6T (t)n,]dldc

+ Jl JJ.[A 12 (DT —7)

+A42,0OT,(—1)+ 4120 T.(t—7)

+A4,,(0T,(t—1))0T(r)dudvdr

Jl jjA 22(0)0T,,(1)T(t—1)dudvdz
d

=JJ [A2:(0)T(t—7)T,(x)

— (A (DT,(t~ 1)+ A2, ()T (t— 1))

x 6T (D)), dldr

+ j ' f f aon(®T(1—1)

+2A220(T)Tv(t_1)+A22(T)Tvv(t—r)]

x0T (t)dudvdr
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f J‘J‘A (00T, ()T (t—7)dudvdr

= JIJ A\ ()T —1)0T(1)n, dldz

- f ff[Am(f)T(t—r)

+ A, ()T (t— )8 T(z) dudvdr

J’ JJA 2 (00T, ()T (t~1)dudodr

= J‘IJ‘ A, ()T ()T (t—1)n,dldz

—L JJ[sz(T)T(t—T)

+ A, ()T, (t—))0T () dudvdr.

(15)

(16)

In formulae (12)-(16) n, and n, are the direction
cosines of the normal to curve L. Taking into account
formulae (11)—(16) and again using the commutative
property of the convolution, it is not difficult to write

formula (10) in the form

§J, = fl fj{[R(r)+R(t—r)]T1(T)

+41(D+4,, (1= Tu(r)
+[A412(0)+ 4, (1= DT, (7)
+[A42:(0) + 45,1 = )] T, (1)
+[A4, (@424, . (—D)+A,50—1)

— A4, (t—OIT (D) +[42(1) + 412, (1 —7)
+2A4,,,(t—1)— At —DIT,(1)+Q (7)

+ [A(T)+Rt(t_r)+Alluu(t_T)

+ A5, —1)+ Az, (I —1)— A (I—7)
— A, (t—0)+ A —D]T()}0T(t—1)

x dudodr + ”[R(:)T(O)éT(t)
— R(O)T(HSTO)} dudv

+ ” (p1(1— O TS T(1—)

+p,(t—0)T(1)0T,(t—1)
+p;(t—0)T(0)6T(t—1)
+p,(t—0)T,(1)6T(t—1)
+ps(t—0)T,(1)0T(t—1)]didr.

Here, p,i=1,..., 5 denote the functions

amn

pit—=)=A4,,(t—0n +A4,(t—1)n,
D2(t—1) = Ay (t—iny
Pit—1)= —A;,(t—1)— A, (t—T)n,

— Azt =Ty + At —)n, + A, (t—T)n,

pi(t—1) = —A4,,(t—1)n,
ps(t—1) = — A, (t—0n, — Ay (t—1)n,.
Further, we have in succession

5J, = j J{R(z)T(t)éT(O)

Q

(18)

+ROITO)—2T, 16T (1)} dudv  (19)

8J, = Jl‘[ {g: (8T (t—1)
o Ju

+42(DOT, (1 — 1) +¢5(0)0T, (1 — 1)}
x[T(W)-T.@l+1g. (DT (—1)
+4:(0T,(1—1)+¢5()7, (- 1)]
x0T (1) +q4(D)OT ()T, (t—1)
+9:(DT (T, (t—1)+45(7)
x0T ()T, (t—1)+¢q5(1)T(z)
x0T, (t—1)}didr.

Formulae (17), (19) and (20) yield

5J(T) = f f f (IR +RU—IT,()

41O+ A4, (=D Tu(0)
+[A4,,(0)+ A4, —D]T,,(7)
+ 42 (D) + 42:(1— )] T, (7)
+[4,(0)+24,,,(t—7)
+A,,,(t—1)—A4,—0]T,(1)

+[A:(1)+ A 2 (t— 1) +2425,(t—7)

— 4, (x)+Q (1)
+[A(T)+R,([~T)+A| luu(t_‘c)
+A12uv(t—-r)+A22w(t_T)

—A4,,(1—1) = A (t—0)+A(1—7)]

x T(0)}dT(t—1)dudovdr

+ ”{m(z)[T(O)— T,16T()

+[R()— ROITHOST(©0)} dudy

+L JL {lg: (T (1 —7)

+42(DOT,(t—1)+45(1)0T,(1—7)]

x[T(D)=T,@)+[(ps(t—7)
+qt—NT (@O +(ps(1—7)

(20
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+4:(t—1)+ 4. —NT, (1)
+(ps(t—1)+q:(t—1)

+4s@—NT,(DN6T (¢ —7)

+ 21 (=) + g DT (D)0 T, (1 —7)
+[p2(t—0)+45(DNT(7)

x0T, (t—1)}dldr. (21)

Define the unknown functions ¢, R, 4, 4,, 4,0 by
the equalities

R(1) = R(0)
Pi(0)+q:(x) =0
Pa(D)+q2(1)+q4(r) =0
Ps(0)+45(1)+g5(1) =0
Pi(t—1)+44(1) =0

p2(1—1)+¢q5(1) =0 22
and, when 0 < © < 1/24, by the relations
R(@+R(t—1) =2cp(0),

Ay (D +A;(t—=1) = —2a,(x), i,j=12
A\ +24,,,(-1)+A4,(—1)—A4,(t—71)

= —2a,(1),
Ay (D) 424,55, (t—1)+ A5, (—1)— 4, (t—7)

= —2a,(7),

A+ R(t—1)+A4,,,.,(t—1)
4+ A5, =7+ Ay, (—1)—A,,(t—7)
~ Ay (t—1)+A(t—1) =0,
Q1) = —24(v). (23)

It is obvious that the system of equations (23) is
consistent. Then, it follows from formulae (18) and
(22) that the functions g(z),i=1,...,5 have been
determined. The consideration of formulae (18) and
(21)—(23) shows that when 0 < © < 1/2¢, the function
T'(u, v, 1), which makes the first variation of the func-
tional J(T') vanish (6J(T) = 0), is the solution of the
initial problem (6)—(8).

DERIVATION OF THE SYSTEM OF EULER
EQUATIONS WITH THE USE OF THE
GALERKIN-KANTOROVICH METHOD FOR AN
APPROXIMATE SOLUTION

Let the functions ¢ (u,v),i,j = 0,1,2,. .., form the
full system of functions in region Q. The approximate
solution of the problem (6)—(8) will be sought in the
form

Two.) =3 3 Vi@ (o).

i=0/=0

4

The unknown functions V(7),i,j=0,1,2,..., are
selected from the condition that the function 7,,,
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determined by formula (24), transforms the first vari-
ation of the functional J(T) into zero (6J(T,,,) = 0).
Formulae (21)-(24) yield

0J(T,m) = ;J; JJZ [(R(x)

+RE—DV (D)"Y + (411 (7)

+ A (1= DNPL (AL +A4,(1—1)
X @i+ (A2 (1) + Ay (=07 + (4, (7)
+24,, -0+ A4,—1)—A4,(t—1))
XOY+(Ax(1)+ A1 2,(t—T) +2A4,5,(t—7)
—A;(1=1)¢+ (4D + R.(1—7)

F A1 (=) + A (1= T) + A2 (E—17)
— AL (1—1)— A (1—1)+ A(1—1))

x ¢)WVy(D]+ Q0 (1)} 0V (1 —1)

x dudovdt + 22JfR(t) I:Z V,,(0)

x¢l¥— To] @6V () dudr

+ ;J; J; [Z Vij(T)¢U— Tw(")]

x[q1(1)¢" +q:(0)PL + 43 (1)p¥]
x 8V(t—1)dldr = 0. (25)

Introduce the following notation :

j J[R (@ +R(—1)]¢"¢" dudv = o(7),

JJ{[A n(@)+4 11("7)]¢Zu

+A12(D)+A41(1—1)]p L +[422(7)

+ A2y (t—DpY +[4, (D) +24,,(1—1)

+ 415 (=1)— A, (t—1)]$I +[4,(7)

+ 42,1~ 1) +2455,(t—1)— A (1— )@Y
HA@+R (=1 + A1t —7)

+ A 120 (= 1)+ App(t—1) — 41, (t—1)

— A3 (1= 1)+ A(1— 7)Y }¢* dudv= B;(7),

JIR(IW’ ¢" dudo = py(0),

- ffR (DT o¢* dudv = (1),
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J; 9. (09" +q:(DPL + 43 (1) 167 dI = 8,(7),
- J; T.(9)q: ()" + ()L + g3 ()Pl 1dl = (1),

f fQ(T)(ﬁ’" dudv = (7). (26)

With the use of formula (26), equality (25) can be
written as

8J(Tym) = Z'[ [Z (2 (T)V 5(T)

ki JO

+ B (D V(D) + ﬂu(T):I oV (t—1)dz
+2 Z I:Z Y (OV;(0)+ ?k!(’):l V(0

+ Z [ Y bV (D) + “ki(T)]

ki Jo L iy

x 8V (t—t)dt = 0. Q7

It follows from formula (27) that the unknown
functions V(1) represent the solution of the following
Cauchy problem for the system of ordinary differ-
ential equations

Z {aijkl(‘[) Vi@ +[Biu(r)

+y,(7)] Vij(‘t)} +Bu(t) +o(r) =0,

_Z V(O V(@) +y(0) = 0,

k=0,1,...,n; [=0,1,....,m. (28)
Thus, the construction of an approximate solution of
problem (6)—(8) is reduced to the solution of problem

(28).

EXAMPLE OF THE SOLUTION OF A TWO-

DIMENSIONAL UNSTEADY-STATE HEAT

CONDUCTION PROBLEM IN THE REGION
WITH A MOVING BOUNDARY

As an example of the application of the above
method, consider the formation in time of a tem-
perature field in a deformable prism which initially
had a circular cross-section. Assume the deformation
to be such that the circle of radius a(0) changes with
time to an ellipse with the same cross-sectional area,
so that the region Q, is

X

0 = {(x,y,r):—T) +a*(™y? <1, 1€(0, t)},

a’(
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where a(7) is the value of the ellipse’s small half-axis
which is an arbitrary positive function of time.

Let the initial temperature T, be the same every-
where throughout the prism and its bounding surface
be maintained at a time constant and everywhere the
same temperature T,,. The thermophysical properties
of the body material will also be assumed constant.
The power of the volumetric heat generating sources
will be assumed constant in time and space.

Then, remembering that hereafter will everywhere
represent the argument At/cp, the following boun-
dary-value problem is arrived at in the region Q,

T, =divVT+g/d, (x,y,7)€Q, (29
T(x,y,0) = T, (x,y)eQ(0) (30
T(x,y,1)=T,, (x,y,71)€S,. (31

Assume that the function a(t) has a continuous
first-order derivative and introduce new variables

v = ya(t), (32
so that problem (29)-(31) will be written in the form

u = x/a(7), T=1

1 7
Tr = ;Tuu+a2Tuv + %(uTu—vTu)+q/A7

wm,v,1)eV, (33)
T(u,v,0)=T,, (WU,v)eQ 34)
T(u,v,1)=T,, (u,v,7)€F,. (3%5)
Here
V= {v,7):(u,v)e, 1€(0,1)},

Q= {(u,v):u’+0> < 1},
F{ = {(u,U,T):u2+U2 = 1, TE(O, t)}.

By not limiting the generality, it is possible to
assume that the constant T,, = 0, since the function
T—T, is the solution of equation (33). An approxi-
mate solution of problem (33)-(35) will be sought in
the form

T, 0,7) = Y. Y. Viy(o)u'v'.

i=0j=0

(36)

It is clear that the solution 7(u,v,7) of problem
(33)-(35) is an even function with respect to variables
u and v. Therefore, it will be required that the function
T,.(u,v, 1), determined by formula (36), be also an
even one in variables u and » and, moreover, could
vanish on the surface F,. It follows from the con-
dition of evenness (7,.(4,0,7) = Tpu(—u,0,7) =
T,..(u, —v,7)) that

T,m(u,v,7) = i i V (u*v¥ 37

i=0j=0
and from the condition T,,,(4,v,7) = 0 at u*+v? = 1,
that

n m

Tom(u,0,7) = ¥,

i=1)=

V(1 —u?—v?)v¥. (38)
0
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It is clear that the functions ¥ (r) in formulae (36}~
(38) are different. So, the approximate solution of
problem (33-(35) is

Z Z Viy(me?

i=1j=

Ty, v,1) = (39)

where the coordinate functions
¢ij - (1 _uz _vz)ivlj.

Since in the example considered

1
co(my =1, a“(t)‘:;—f(}—)’
a(1) =0, 2,5(1) =a2(1),
_d@, 0
an(T)—?{G‘)‘u, ax(7) a0
gty = —2q/4,

then, based on equation (23), it follows that formulae
(26) for 0 < 7 < 1/2r will be written in the form

Uigr = Lyys = 2 JJW ¢* dudy,
Q
Oy = éz}kf = 03

Y= —T, J.J\d’kl dudo,
o

Bu= —2g/2 J‘[d)k‘du do,

2
ﬁijkl(f) = JJ.[- ;5‘(‘5 b

@ @
( ) T

—2a’ (1)l -

3:] ¢ dudo.

(40)

Problem (28) for the determination of the unknown
functions ¥,(z) of expansion (39) will acquire the form

Z {auﬂ V (t) + ﬁukl(’c) (T)} + ﬂk.’ = 05

Z Fjkt Vi@ +2y, =0,
b

ik=1,2,....n; jI=0,1,...,m (41)

Calculate the approximate first-order solution
Tio=Vio(D)¢ (. v) = V o(1)(1 —u?~0?). It follows
from equation (41) that this solution can be deter-
mined from the following problem

#1010V 50(T) + Broro(DVio{t) + 810 =0,
%1010V 10{0)+2y10 = 0,
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whence

2710 _

X010

i 1
X (5.4
J:) p(“lom
xexp(—

Formula (40} gives

LIt

Xiote

L"ﬂm.o(ﬁ)dc)dn]

Vie{t) = {:“‘

). (42)

i
Bro=—nq/k, Vo= _ETO’

5 4
Bioro(t) = J;J‘(l —u?—v )[az"(‘_r“)‘
a(r) ,

‘@, a0
a0 e

Xigre = 57’5,

+4az('c)+4

]d dv

1+a*()

a*(m)
It follows from formulae (42) and (43) that the first
approximation is calculated from

=2 43)

3 3
Tm(f)=[ To+2§

Jool [ e

x [exp (——3.{:}2?—;1@)—@)](1 —u? —p?).

In conclusion, a system of equations will be given
which determines the approximate second-order solu-
tion. The second approximation is prescribed by

Ty(,0,7) = Vi (D) "+ V191!
+ V2002 = Vio(r)(1 = 1> —0?)
+V (@O0~ =)+ Vo (D1 —u? —v2)2.

With the use of formulae (40) and (41), simple
calculations give that the unknown functions V' {(z),
V,1(z) and V,,(7) present the solution of the following
Cauchy problem

2y, Ly, Ly,
3 10(T)+1_2‘ 11(‘5)"‘5 20(t)
1
+2( ( )+a (f)) Vjo(f)

11\ 1a
+[§<E§+a)+?2""]V]1(T)

+4(£§ +a2) Vaolt) = g/
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+|:§(?+a> 12 :lVlO(‘E)
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g2t |V + {752t
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UETT A

1148
2255¢

2

10 + 35 Vir®) + 2 Vao(®)
(5o
1 5, 1 a
+<‘6? ga + EZ)V“(T)

2 1 1
§V10(O) + '1‘2 Vi(0) + 5 V(0)=T

V100 + 25 V1(0) + 35 Vanl0) =

1 1 2
3 Vio(0) + 20 V(0 + 3 V120(0) =§T0

CONCLUSIONS

The solution of the unsteady-state heat conduction
problems for a plane region with the outer boundary

N. M. TSIRELMAN and A. V. ZHIBER

moving arbitrarily in time can be performed suc-
cessfully on the basis of the variational description
which uses the convolution-type functional, after pre-
liminary transition to the cylindrical region. In this
case approximate analytical or numerical solution of
the problem stated can be obtained by applying, for
example, the Galerkin—Kantorovich method. Tt
should also be noted that the method developed can
also be extended, without great changes of the con-
volution-type functional, to the case of the second-
and third-kind boundary conditions by assigning the
heat flux density or the linear coupling between the
temperature and its gradient on the body surface.
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SOLUTION D’UN PROBLEME DE CONDUCTION THERMIQUE VARIABLE POUR UN
MILIEU BIDIMENSIONNEL AVEC UNE FRONTIERE MOBILE

Résumé—A 1’aide d’une fonctionnelle de type convolution, on donne une description variationnelle de la

conduction de 1a chaleur avec des conditions aux limites de premiére espéce pour un milieu bidimensionnel

dont la frontiére se déplace dans le temps suivant une loi arbitraire. A partir de la méthode Galerkin—

Kantorovich, un systéme correspondant des équations d’Euler est décrit et la solution (numérique ou

analytique) détermine le champ de température dans chaque cas particulier. On donne comme exemple les

approximations analytiques premiére et seconde de la solution d’un probléme de déformation d’un prisme
ayant initialement une section droite circulaire.

LOSUNG DES INSTATIONAREN WARMELEITPROBLEMS FUR EIN
ZWEIDIMENSIONALES GEBIET MIT BEWEGLICHER BEGRENZUNG

Zusammenfassung—Unter Verwendung des Faltungs-Funktionals wird eine Variationsbeschreibung der

instationidren Wirmeleitung mit Randbedingungen erster Art fiir ein zweidimensionales Gebiet vorgestellt,

dessen Berandung sich zeitlich verandert. Mit der Galerkin—Kantorovich-Methode wird ein System von

Euler-Gleichungen formuliert, deren Ldsung (numerisch oder analytisch) zur Bestimmung des Tem-

peraturfeldes in jedem Spezialfall gebraucht wird. In einem Beispiel wird die erste und zweite analytische

Niherung an die Lsung des oben geschilderten Problems fir den Fall der Deformation eines Prismas mit
anfénglich kreisférmiger Querschnittsfliche ermittelt.
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PEMEHUE 3AJTAYU HECTALIMOHAPHOHN TEIUJIOITPOBOJHOCTH 11 ABYXMEPHOI
OBJIACTH C IOABMXHON I'PAHULIEA

Ansorauus—C ucnosb3oBaHueM (QYHKIHOHAIA THMA CBEPTKM NOCTPOEHO BapUalMOHHOE ONHCAHHUE MPO-
Lecca HeCTAMOHAPHOH TEIMJIONPOBOOHOCTH C IPAaHHYHBIMH YCJIOBHSMH NEPBOrO poja Ajis ABYXMEPHOM
o6s1acTy, rpaHuna KOTOpOR ABHXETCA BO BPEMEHH IO M3BECTHOMY MPOM3BOJILHOMY 3aKoHy. OCHOBbI-
Basck Ha meron anepxuHa-KaHTOpoBHYa, BRIMHCAHA COOTBETCTBYIOLUIAS CHCTEMA ypapHeHMi Diinepa,
pellicHHe KOTOPOW (YHCICHHOE MM AHAMNTHYECKOE) HEOOXOOHMO JUIS ONpeleleHHs TeMIepaTypHOTro
nmoJis B KaXOOM KOHKPETHOM ciydae. JaH NpuMep Nosiyd4eHHs RHAJMTHYECKMX [EPBOTO M BTOPOro
npubaMkeHUs K peleHuio chopMyIHPOBAHHOM BhIllle 3ana4yu Npu gedopMauny IPU3MBI C MEPBOHA-
4aJIbHO KPYTOBBIM NONEPEYHBIM CCUCHAEM.
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